W:www.vsajaipur.com | E:vsajaipur@gmail.com M.:+91 9460356652, 8058999828 Add. : 84, Krishna Vihar, Behind Narayan Niwas, Gopalpura Bypass, Jaipur - 302015 /vsajaipur \| /vsajaipur |

Class $\mathbf{- 1 2}^{\text {th }}$
Worksheet-17

Chapter-4
-

1. If $p+q+r=0$ then prove that

$$
\left|\begin{array}{ccc}
p a & q b & r c \\
q c & r a & p b \\
r b & p c & q a
\end{array}\right|=p q r\left|\begin{array}{ccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
$$

2. If $a+b+c=0$ then solve the following equation

$$
\left|\begin{array}{ccc}
a-x & c & b \\
c & b-x & a \\
b & a & c-x
\end{array}\right|=0
$$

3. Prove that one root of the equation is $x=2$ and hence find the remaining roots

$$
\left|\begin{array}{rrr}
x & -6 & -1 \\
2 & -3 x & x-3 \\
-3 & 2 x & x+2
\end{array}\right|=0
$$

4. Prove that: $\left|\begin{array}{rrr}-a^{2} & a b & a c \\ a b & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.
5. Evaluate the determinant:

$$
\left|\begin{array}{ccc}
1+a & b & c \\
a & 1+b & c \\
a & b & 1+c
\end{array}\right|
$$

6. If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ and cofactors corresponding to elements $a_{11}, a_{12}, a_{13}, \ldots$ are $F_{11}, F_{12}, F_{13}, \ldots$ then the correct statement is
(a) $a_{12} F_{12}+a_{22} F_{22}+a_{32} F_{32}=0$
(b) $a_{12} F_{12}+a_{22} F_{22}+a_{32} F_{32} \neq \Delta$
(c) $a_{12} F_{12}+a_{22} F_{22}+a_{32} F_{32}=\Delta$
(d) $a_{12} F_{12}+a_{22} F_{22}+a_{32} F_{32}=-\Delta$.
